skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Carroll, John M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carroll, John M (Ed.)
    Data science, an emerging multidisciplinary field, resides at the intersec- tion of computational sciences, statistical modeling, and domain-specific sciences. The current norm for data science education predominantly focuses on graduate programs, which presume a pre-existing knowledge base in one or more relevant sciences. However, this framework often overlooks those who don’t plan to pursue graduate studies, thereby limiting their exposure to this rapidly expanding field. Penn State addressed this gap by establishing one of the first undergraduate degree programs in Data Sciences, a collaboration between the College of Information Sci- ences and Technology, the Department of Computer Science and Engineering, and the Department of Statistics. One key component of this program is a project-focused, writing-intensive course designed for upper-class undergraduates. This course guides students through the entire data science project pipeline, from problem identifica- tion to solution presentation. It allows students to apply foundational data science principles to real-world problems, advancing their understanding through practi- cal application. This chapter details the objectives, rationale, and course design, alongside reflections from our teaching experience. The insights provided could be helpful to instructors developing similar data science programs or courses at an undergraduate level, broadening the influence of this important field 
    more » « less